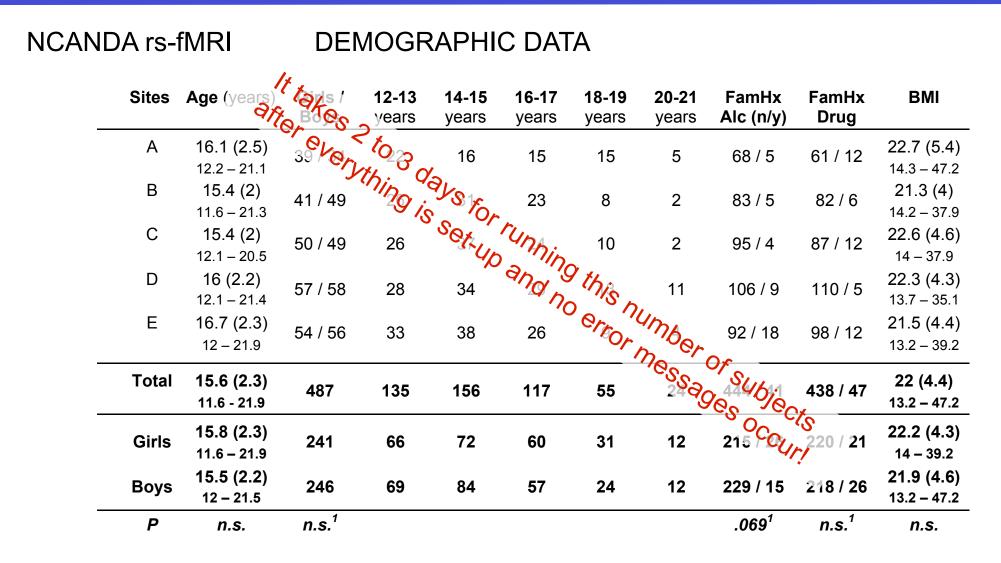


RESTING-STATE FUNCTIONAL CONNECTIVITY IN ADOLESCENCE

rs-fMRI NCANDA data analyzed by Eva M. Müller-Oehring and Daniel Cuneo

Dept. of Psychiatry & Beh. Sciences, Stanford University, Stanford, CA Neuroscience Program, SRI International, Menlo Park, CA

Adolescents' Functional Brain Networks


The brain's communication pathways change / mature over time during adolescence.

Alcohol interferes with the brain's communication pathways.

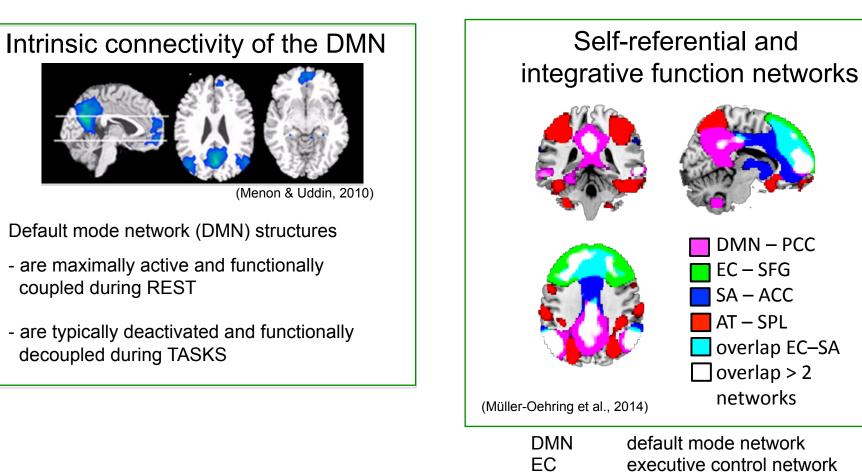
Factors that may play a role in how functional brain networks are connected:

- Age
- Sex
- Family History of Alcoholism

Sample characteristics of the first 487

Between group *t*-tests; ¹Chi square; significance level was set at p < 0.05, 2-tailed

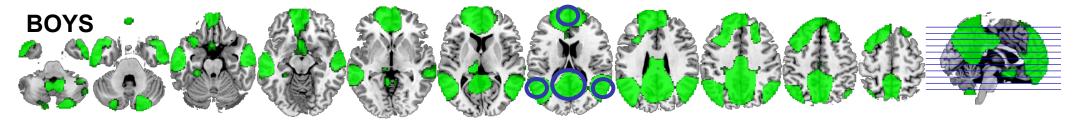
Background – Resting-state Functional Networks

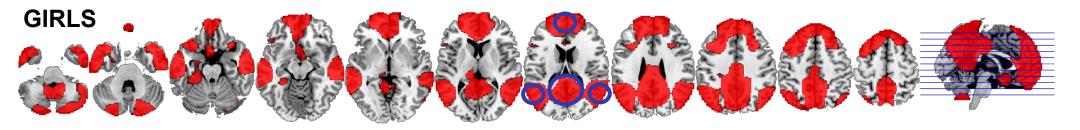

SA

AT

salience network

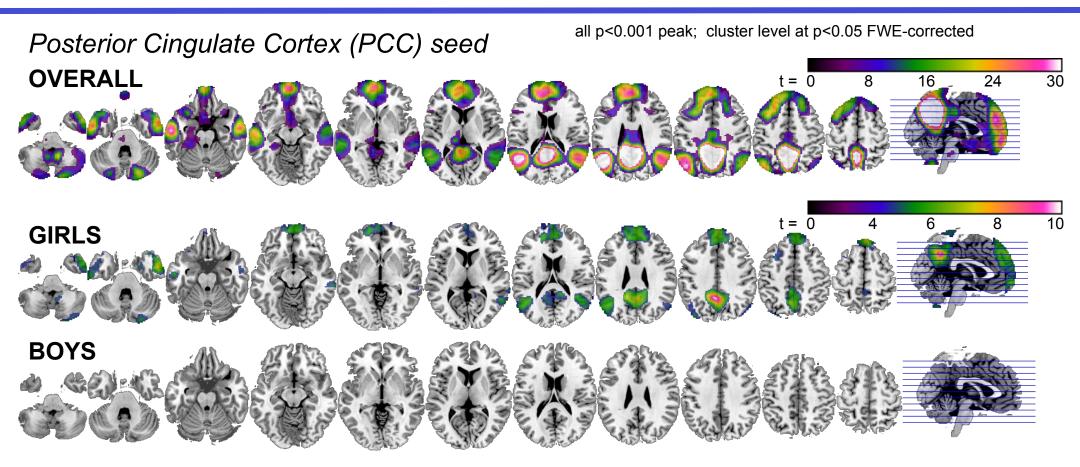
dorsal attention network

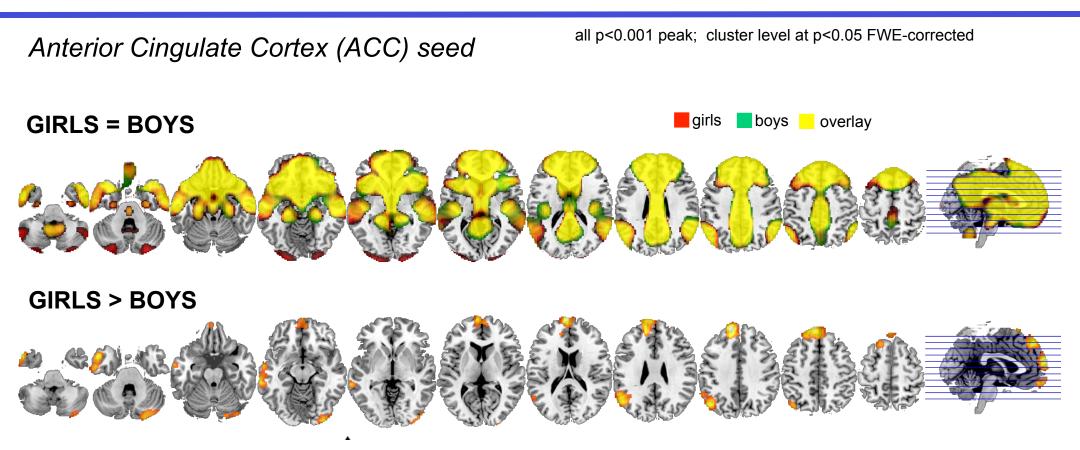

The human brain is intrinsically organized into dynamic, functional networks that are interconnected by neural "hubs."



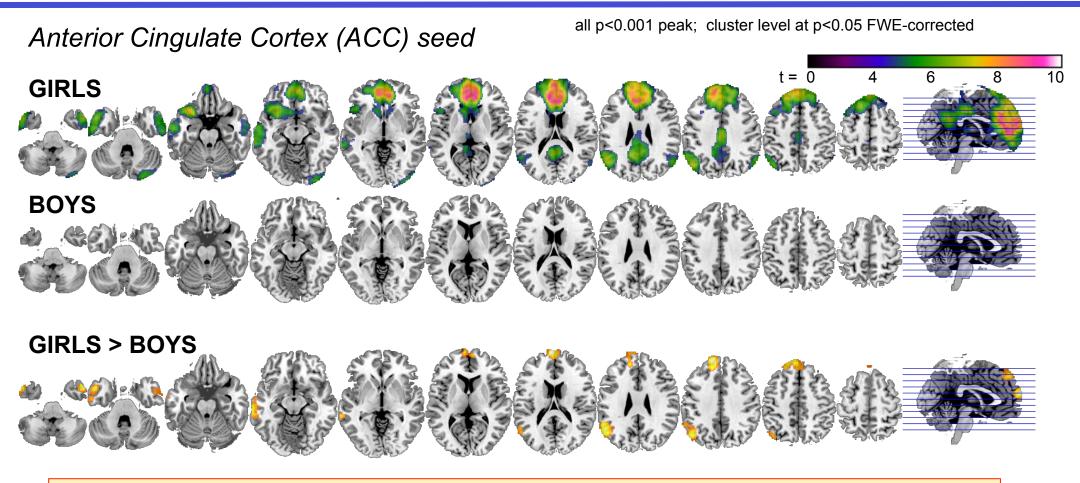
Default Mode Network: Girls and Boys

Posterior Cingulate Cortex (PCC) seed

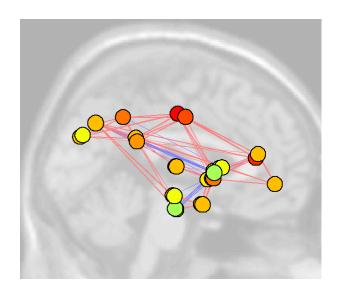

all p<0.001 peak; cluster level at p<0.05 FWE-corrected


Adolescent boys and girls show the typical DMN pattern, i.e., activation synchrony between the PCC, lateral left and right parietal and medial prefrontal cortices

Default Mode Network: Age effects


Overall, older adolescent age is a significant contributor to DMN connectivity. Girls, but not boys, showed significantly greater connectivity with older age.

Salience: Girls and Boys



Compared with boys, girls showed *greater ACC connectivity* to mPFC, left temporoparietal and right cerebellar regions

Salience Network: Age effects

In girls, but not boys, older adolescent age is associated with greater SA network connectivity.

BRAIN CONNECTIVITY Volume 3, Number 3, 2013 © Mary Ann Liebert, Inc. DOI: 10.1089/brain.2012.0113

Exploring Functional Connectivity Networks with Multichannel Brain Array Coils

Sheeba Arnold Anteraper,¹ Susan Whitfield-Gabrieli,² Boris Keil,³ Steven Shannon,¹ John D. Gabrieli,² and Christina Triantafyllou³

A network is a collection of nodes and edges,

- nodes indicate basic elements within the system of interest
- edges indicate the associations among those elements

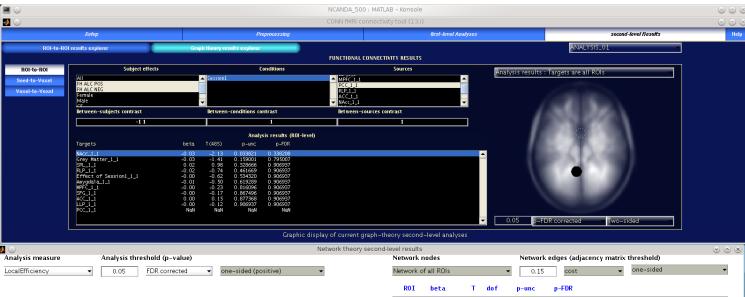
Local efficiency Node level:

Local efficiency of a node represents the "locality" of the node's connectivity, i.e., the extent of connectivity of the node with its neighbors.

Network level:

It means the extent of locality, (short-range connections) i.e., nodes with high local efficiency are connected to neighbors that form a strong or well connected local network, while nodes with low local efficiency are connected to neighbors that are sparsely connected or distant from each other.

Contrast:

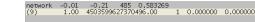

GIRLS > BOYS for <u>**Global Efficiency</u>**: higher global efficiency means better long-range connectivity Node level: Global efficiency of a node is the "centrality" of the node's connectivity Network level: measure of the extent of centrality as well as the "efficiency" of this connectivity (nodes with higher global efficiency are "better connected</u>

4 💿		Network theory second-le	evel results								\odot \odot
Analysis measure	Analysis threshold (p-value)		Network n	odes			Network	edges (adjac	ency matrix	(threshold)	
GlobalEfficiency 🚽 👻	0.05 FDR corrected	-	Network of	f all ROIs		•	0.30	correlati	on co 👻	two–sided	•
			ROI	beta	т	dof	p-unc	p-FDR			
	BLP_1_PCC_1_1 BLP_1_1 ACC_1_1 MPFC_1_1		network (7) (2) (1) (3) (4) (5)	0.05 0.08 0.06 0.06 0.05 0.05	4.25 4.65 4.62 4.18 3.94 3.35 3.23	485 485 485 485 485 485 485	0.000026 0.000004 0.000005 0.000034 0.000095 0.000876 0.001323	0.000022 0.000022 0.000102 0.000213 0.001576 0.001985			
			(2) = MI (3) = PI (4) = RI	LP_1_1 PFC_1_1 CC_1_1 LP_1_1 CC_1_1 FG_1_1			e	<port data<="" th=""><th></th><th></th><th></th></port>			

Contrast: GIRLS > BOYS for <u>Costs</u>:

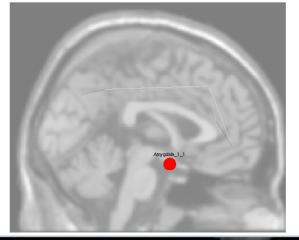
Node level: cost of a node can be interpreted as the strength of connectivity of a node Network level: cost indicates hypo/hyperconnectivity in the overall network (e.g., higher cost = overall hyperconnectivity.

🛃 💿		Network theory second-level results		\odot
Analysis measure A	Analysis threshold (p-value)	Network nodes	Network edges (adjacency matrix thr	reshold)
LocalEfficiency 👻	0.05 FDR corrected two-sided	▼ Network of all ROIs		o-sided 🔹 👻
		ROI beta	T dof p-unc p-FDR	
		network 0.05 (3) 0.07 (7) 0.08 (1) 0.06	2.91 485 0.003734 2.89 461 0.004007 0.020560 2.85 458 0.004569 0.020560 2.45 479 0.014745 0.044234	·
	LLP_1_1 \$FG_1_1	a fixed percentile c connectivity) was u matrix (within the F	k-level estimations of local e cost threshold (top 30% of Roused to calculate connectivity ROIs), followed by a threshol ween-group comparisons.	OI-to-ROI (adjacency)
		(1) = LLP_1_1 (3) = PCC_1_1 (7) = SFG_1_1	export data	



MATLAB 7.7.0 (R2008b)

02:20 PM


CONN fMR

connectivity too

letwork theory

second-level re

To contrast network-level estimations of local efficiency, a fixed percentile cost threshold (top 15% of ROI-to-ROI connectivity) was used to calculate connectivity (adjacency) matrix (within the ROIs), followed by a threshold of pFDR-corr < 0.05, for between-group comparisons.

	-
9) = Amyqdala_1_1	•
	-
export data	
export data	

raw:tcsh-

NCANDA_500 : MATLAB - Konso

(Ö) 🥝

Contrast:

FhxAlc Positive > FhxAlc Negative for <u>Costs</u>:

Node level: cost of a node can be interpreted as the strength of connectivity of a node

Network level: cost indicates hypo/ hyperconnectivity in the overall network (e.g., higher cost = overall hyperconnectivity.

🗗 🚥 🔚